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Annexes

Essais cliniques randomisés 
vs études d’observation
« Nous avons trois moyens principaux : l’observation 
de la nature, la réflexion et l’expérience. L’observation 
recueille les faits ; la réflexion les combine ; l’expé-
rience vérifie le résultat de la combinaison. » – Denis 
Diderot. Pensées sur l’interprétation de la nature 
(§ XV, 1 754) [65].
Les ECR, lorsqu’ils sont disponibles pour une question 
clinique, doivent être privilégiés, car ils minimisent les 
biais et fournissent des données plus robustes [66].
Récemment, Fanaroff et al. [67] ont discuté l’idée que 
l’observation clinique et le bon sens pourraient parfois 
être préférés aux ECR pour éclairer les décisions cli-
niques. Ils soulignent que les résultats des ECR bien 
conçus ont souvent contredit les pratiques basées 
sur le bon sens. Ils plaident pour que les ECR restent 
la référence pour établir des preuves solides, car ils 
fournissent des résultats plus fiables que les obser-
vations cliniques seules.

Méta-analyse séquentielle 
(trial sequential analysis ou TSA)
La TSA est une méthode (assez récente) de méta-ana-
lyse cumulative, utilisée pour pondérer les erreurs de 
type I et II (liées à la répétition des tests statistiques), 
et pour estimer à partir de quel moment l’effet d’une 
intervention est suffisamment important pour ne pas 
être influencé par des études ultérieures.
Contrairement aux méta-analyses conventionnelles, 
la TSA permet donc d’ajuster sur les tests répétés et 
l’hétérogénéité, ce qui conduit à une réduction du 
risque de conclusion prématurée.

Méta-analyse de second ordre
Selon Schmidt et al. [68], une méta-analyse de second 
ordre est une méta-analyse d’un certain nombre de 
méta-analyses de premier ordre, statistiquement 
indépendantes et méthodologiquement compa-
rables, examinant la même relation dans différents 
contextes. La méta-analyse de premier ordre permet 
de réduire de façon significative la variance de l’erreur 
d’échantillonnage.
C’est donc une synthèse méthodologique qui agrège 
et analyse les résultats de plusieurs méta-analyses. 
L’unité d’analyse est la méta-analyse elle-même, et 
non les essais individuels.
Les objectifs théoriques sont d’évaluer la qualité 
méthodologique des méta-analyses existantes, d’en 
estimer la robustesse globale et d’identifier les dis-
cordances.
Les objectifs pratiques sont : résumer l’ensemble des 
méta-analyses portant sur un même thème ; compa-
rer leurs conclusions ; estimer un effet global à par-

tir des effets agrégés ; évaluer la qualité et la concor-
dance des revues.
Les analyses concernent le chevauchement (overlap) 
des études primaires entre les différentes méta-ana-
lyses, l’hétérogénéité entre méta-analyses (critères 
d’inclusion, définition des événements, méthodes statis-
tiques), ainsi que la qualité des méta-analyses incluses.
Les recommandations de bonnes pratiques et les 
étapes méthodologiques essentielles pour réaliser 
des méta-revues rigoureuses et systématiques sont 
disponibles dans l’article de Henessy et al. [69].

Détail des méthodes statistiques 
de la méta-analyse de la Société 
française d’hygiène hospitalière

Méta-analyse fréquentiste
Une approche fréquentiste a été mise en œuvre dans 
le cadre de cette méta-analyse [a]. Les effets observés 
dans les différentes études ont été combinés à l’aide 
d’un modèle à effets aléatoires (reposant sur l’hypo-
thèse que les vrais effets diffèrent entre les études 
et fluctuent autour d’un effet moyen global, avec une 
variance inter-études notée τ2).
La variance inter-études (τ2) a été estimée à l’aide 
de la méthode de Sidik-Jonkman [b]. Cette méthode 
est robuste, en particulier en présence d’un nombre 
limité d’études et d’une hétérogénéité importante 
(hétérogénéité importante dans notre cas).
Les intervalles de confiance de l’effet combiné ont été 
calculés en utilisant la méthode de Hartung-Knapp 
(également appelée méthode de Hartung-Knapp-
Sidik-Jonkman ou HKSJ. Celle-ci procure une infé-
rence plus robuste et conservative que l’approche 
classique de Der-Simonian-Laird).
L’hétérogénéité entre les études a été évaluée via 
le test Q de Cochran. La statistique I2 de Higgins et 
Thompson [c] a été calculée pour quantifier la propor-
tion de la variabilité totale attribuable aux différences 
réelles entre les études plutôt qu’à l’erreur d’échan-
tillonnage. Lorsque cela était possible, un intervalle 
de confiance à 95% pour τ2 a été calculé à l’aide de 
méthodes de profil basées sur la statistique Q.
Conformément aux recommandations d’IntHout et 
al. [d], nous présentons également l’intervalle de pré-
diction à 95% (l’intervalle de confiance caractérise 
l’incertitude concernant l’effet moyen ; l’intervalle de 
prédiction permet d’estimer l’intervalle dans lequel 
l’effet pourrait se situer dans une future étude).
Un diagramme en entonnoir (funnel plot) a été pro-
duit afin d’évaluer visuellement un éventuel biais de 
publication [e,f]. Les tests statistiques associés, tels 
que le test de régression d’Egger ou de Begg [g], ont 
été réalisés.
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Méta-analyse bayésienne
La réalisation d’une méta-analyse en présence 
de faibles taux d’événements, d’un petit nombre 
d’études, ou des deux simultanément, pose des dif-
ficultés méthodologiques. En particulier, l’estimation 
de l’hétérogénéité inter-études est délicate dans ce 
contexte, et une estimation imprécise de cette hétéro-
généité peut conduire à des intervalles de confiance 
artificiellement trop étroits et à des taux d’erreur de 
type I inappropriés.
La SF2H a donc réalisé une méta-analyse bayésienne 
complémentaire, reposant sur une vraisemblance 
binomiale (en modélisant directement les nombres 
d’événements observés, selon une distribution bino-
miale), avec une fonction de lien logit. Cette approche 
présente l’avantage majeur d’éviter le recours à des 
corrections de continuité (telles que l’ajout de 0,5 
dans les cellules vides) lorsque certaines études rap-
portent zéro événement dans un bras ou dans les 
deux bras de traitement (situation effectivement ren-
contrée dans notre méta-analyse).
Des analyses de sensibilité ont été conduites, comme 
recommandé par Rosenberger et al. [h], afin d’évaluer 
l’influence du choix de différents hyperparamètres 
ou de différents types de distributions a priori sur 
les conclusions de la méta-analyse. Cette démarche 
permet d’évaluer la robustesse des résultats obte-
nus. Nous avons utilisé des distributions a priori fai-
blement informatives pour le paramètre d’hétérogé-

néité τ, conformément aux propositions de Günhan et 
al. et de Röver et al. [i,j]. Cela permet d’incorporer une 
information minimale, tout en laissant les données 
déterminer principalement l’estimation de l’hétéro-
généité. Nous avons initialement utilisé les a priori sui-
vants : une distribution t de Student (0 ; 0,66 ; 3) pour 
l’effet et une distribution inverse gamma (2,08 ; 0,86), 
pour l’hétérogénéité.
La convergence des chaînes de Markov Monte-Carlo 
(MCMC) utilisées pour l’estimation bayésienne a été 
évaluée à l’aide du diagnostic de Gelman et Rubin [k], 
également connu sous le nom de statistique R-hat.
Les intervalles de confiance (approche fréquentiste) 
et les intervalles de crédibilité (approche bayésienne) 
ont été calculés selon un niveau conventionnel de 
95%, permettant ainsi une comparaison directe entre 
les deux approches méthodologiques.
Les analyses fréquentistes ont été réalisées à l’aide 
du logiciel Stata® (version 19.5) ainsi que de plusieurs 
packages du langage R® (notamment les packages 
meta et metafor).
Les analyses bayésiennes ont été conduites en utili-
sant plusieurs packages du langage R® (version 4.5.5) 
(par exemple RoBMA, brms, rstanarm).
Stata® (StataCorp, College Station, TX, États-Unis) : 
https://www.stata.com/
R® (The R Foundation for Statistical Computing, 
Vienne, Autriche) : https://cran.r-project.org/ � n
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